404 research outputs found

    High Performance Liquid Chromatography as a valuable tool for geoforensic soil analysis

    Get PDF
    A key issue for geoforensic analysis is the ability to discriminate between geographical locations of close proximity, often with similar underlying geology. This paper addresses the lack of empirical research into the non-mineral components of sediment samples and presents the development of a method of sediment sample characterisation by High Performance Liquid Chromatography (HPLC) utilising the organic components of the sample. A sample preparation method and set of instrument parameters were developed such that the cost of the analysis could be reduced, efficiency increased and the sample amount required for analysis reduced fourfold. The re-developed method allows samples collected from different locations within the same forensically relevant site to be accurately discriminated in this study by both visual examination of the chromatography and the use of multivariate statistics. The results of the HPLC analysis were compared with those obtained by quartz grain surface texture analysis, and HPLC was found to offer better discrimination between the samples in this instance. The results of this study suggest that HPLC has the potential to offer an accurate and practical method of comparing soil samples based on characteristics that are independent of, and therefore complementary to, traditional mineralogical-based geoforensic analyses

    The identification of markers for Geoforensic HPLC profiling at close proximity sites

    Get PDF
    Soil is a highly transferable source of trace physical material that is both persistent in the environment and varied in composition. This inherent variability can provide useful information to determine the geographical origin of a questioned sample or when comparing and excluding samples, since the composition of soil is dependent on geographical factors such as climate, bedrock geology and land use. Previous studies have limited forensic relevance due to the requirement for large sample amounts and unrealistic differences between the land use and geographical location of the sample sites. In addition the philosophical differences between the disciplines of earth sciences, for which most analytical techniques have been designed, and forensic sciences, particularly with regard to sample preparation and data interpretation have not been fully considered. This study presents an enhanced technique for the analysis of organic components of geoforensic samples by improving the sample preparation and data analysis strategies used in previous research into the analysis of soil samples by high performance liquid chromatography (HPLC). This study provides two alternative sets of marker peaks to generate HPLC profiles which allow both easy visual comparison of samples and the correct assignment of 100% of the samples to their location of origin when discriminating between locations of interest in multivariate statistical analyses. This technique thereby offers an independent form of analysis that is complementary to inorganic geoforensic techniques and offers an easily accessible method for discriminating between close proximity forensically relevant locations

    The discrimination of geoforensic trace material from close proximity locations by organic profiling using HPLC and plant wax marker analysis by GC

    Get PDF
    There is a need to develop a wider empirical research base to expand the scope for utilising the organic fraction of soil in forensic geoscience, and to demonstrate the capability of the analytical techniques used in forensic geoscience to discriminate samples at close proximity locations. The determination of wax markers from soil samples by GC analysis has been used extensively in court and is known to be effective in discriminating samples from different land use types. A new HPLC method for the analysis of the organic fraction of forensic sediment samples has also been shown recently to add value in conjunction with existing inorganic techniques for the discrimination of samples derived from close proximity locations. This study compares the ability of these two organic techniques to discriminate samples derived from close proximity locations and finds the GC technique to provide good discrimination at this scale, providing quantification of known compounds, whilst the HPLC technique offered a shorter and simpler sample preparation method and provided very good discrimination between groups of samples of different provenance in most cases. The use of both data sets together gave further improved accuracy rates in some cases, suggesting that a combined organic approach can provide added benefits in certain case scenarios and crime reconstruction contexts

    IDEAL-D Framework for Device Innovation: A Consensus Statement on the Preclinical Stage

    Get PDF
    OBJECTIVE: To extend the IDEAL Framework for device innovation, IDEAL-D, to include the preclinical stage of development (Stage 0). BACKGROUND: In previous work, the IDEAL collaboration has proposed frameworks for new surgical techniques and complex therapeutic technologies, the central tenet being that development and evaluation can and should proceed together in an ordered and logical manner that balances innovation and safety. METHODS: Following agreement at the IDEAL Collaboration Council, a multidisciplinary working group was formed comprising 12 representatives from healthcare, academia, industry, and a patient advocate. The group conducted a series of discussions following the principles used in the development of the original IDEAL Framework. Importantly, IDEAL aims for maximal transparency, optimal validity in the evaluation of primary effects and minimisation of potential risk to patients or others. The proposals were subjected to further review and editing by members of the IDEAL Council before a final consensus version was adopted. RESULTS: In considering which studies are required before a first-in-human study, we have: (1) classified devices according to what they do and the risks they carry, (2) classified studies according to what they show about the device, and (3) made recommendations based on the principle that the more invasive and high risk a device is, the greater proof required of their safety and effectiveness prior to progression to clinical studies (Stage 1). CONCLUSIONS: The proposed recommendations for preclinical evaluation of medical devices represent a proportionate and pragmatic approach that balances the de-risking of first-in-human translational studies against the benefits of rapid translation of new devices into clinical practice

    An Assessment of Students’ Satisfaction in Higher Education

    Get PDF
    Student’s Satisfaction (SS) with a particular subject may impact the learning process, being the figure of attentiveness of the utmost importance over time, and also a very difficult undertaking to accomplish. To go forward with such exercise, a workable methodology for problem solving had to be built and tested. It is based on a thermodynamic approach to Knowledge Representation and Reasoning, which is the ultimate goal of SS assessment when working on a particular topic

    Explicit Logic Circuits Discriminate Neural States

    Get PDF
    The magnitude and apparent complexity of the brain's connectivity have left explicit networks largely unexplored. As a result, the relationship between the organization of synaptic connections and how the brain processes information is poorly understood. A recently proposed retinal network that produces neural correlates of color vision is refined and extended here to a family of general logic circuits. For any combination of high and low activity in any set of neurons, one of the logic circuits can receive input from the neurons and activate a single output neuron whenever the input neurons have the given activity state. The strength of the output neuron's response is a measure of the difference between the smallest of the high inputs and the largest of the low inputs. The networks generate correlates of known psychophysical phenomena. These results follow directly from the most cost-effective architectures for specific logic circuits and the minimal cellular capabilities of excitation and inhibition. The networks function dynamically, making their operation consistent with the speed of most brain functions. The networks show that well-known psychophysical phenomena do not require extraordinarily complex brain structures, and that a single network architecture can produce apparently disparate phenomena in different sensory systems
    corecore